Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
mBio ; 14(5): e0127923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37646522

RESUMO

IMPORTANCE: Lipoxygenases (LOXs) are enzymes that catalyze the deoxygenation of polyunsaturated fatty acids such as linoleic and arachidonic acid. These modifications create signaling molecules that are best characterized for modulating the immune response. Deletion of the first lipoxygenase-like enzyme characterized for Toxoplasma gondii (TgLOXL1) generated a less virulent strain, and infected mice showed a decreased immune response. This virulence defect was dependent on the mouse cytokine interferon gamma IFNγ. TgLOXL1 changes location from inside the parasite in tissue culture conditions to vesicular structures within the host immune cells during mouse infection. These results suggest that TgLOXL1 plays a role in the modification of the host immune response in mice.


Assuntos
Toxoplasma , Animais , Camundongos , Virulência , Lipoxigenase , Proteínas de Protozoários , Imunidade
2.
mBio ; 14(1): e0300822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744962

RESUMO

There are several Entamoeba species that colonize humans, but only Entamoeba histolytica causes severe disease. E. histolytica is transmitted through the fecal-oral route to colonize the intestinal tract of 50 million people worldwide. The current mouse model to study E. histolytica intestinal infection directly delivers the parasite into the surgically exposed cecum, which circumvents the natural route of infection. To develop a fecal-oral mouse model, we screened our vivarium for a natural murine Entamoeba colonizer via a pan-Entamoeba PCR targeting the 18S ribosomal gene. We determined that C57BL/6 mice were chronically colonized by Entamoeba muris. This amoeba is closely related to E. histolytica, as determined by 18S sequencing and cross-reactivity with an E. histolytica-specific antibody. In contrast, outbred Swiss Webster (SW) mice were not chronically colonized by E. muris. We orally challenged SW mice with 1 × 105 E. muris cysts and discovered they were susceptible to infection, with peak cyst shedding occurring between 5 and 7 days postinfection. Most infected SW mice did not lose weight significantly but trended toward decreased weight gain throughout the experiment compared to mock-infected controls. Infected mice treated with paromomycin, an antibiotic used against noninvasive intestinal disease, do not become colonized by E. muris. Within the intestinal tract, E. muris localizes exclusively to the cecum and colon. Purified E. muris cysts treated with bovine bile in vitro excyst into mobile, pretrophozoite stages. Overall, this work describes a novel fecal-oral mouse model for the important global pathogen E. histolytica. IMPORTANCE Infection with parasites from the Entamoeba genus are significantly underreported causes of diarrheal disease that disproportionally impact tropical regions. There are several species of Entamoeba that infect humans to cause a range of symptoms from asymptomatic colonization of the intestinal tract to invasive disease with dissemination. All Entamoeba species are spread via the fecal-oral route in contaminated food and water. Studying the life cycle of Entamoeba, from host colonization to infectious fecal cyst production, can provide targets for vaccine and drug development. Because there is not an oral challenge rodent model, we screened for a mouse Entamoeba species and identified Entamoeba muris as a natural colonizer. We determine the peak of infection after an oral challenge, the efficacy of paromomycin treatment, the intestinal tract localization, and the cues that trigger excystation. This oral infection mouse model will be valuable for the development of novel therapeutic options for Entamoeba infections.


Assuntos
Entamoeba histolytica , Entamoeba , Entamebíase , Humanos , Animais , Bovinos , Camundongos , Entamoeba/genética , Paromomicina , Camundongos Endogâmicos C57BL , Fezes/parasitologia
3.
Infect Immun ; 90(2): e0063821, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34928716

RESUMO

Animals with a chronic infection of the parasite Toxoplasma gondii are protected against lethal secondary infection with other pathogens. Our group previously determined that soluble T. gondii antigens (STAg) can mimic this protection and be used as a treatment against several lethal pathogens. Because treatments are limited for the parasite Cryptosporidium parvum, we tested STAg as a C. parvum therapeutic. We determined that STAg treatment reduced C. parvum Iowa II oocyst shedding in gamma interferon knockout (IFN-γ-KO) mice. Murine intestinal sections were then sequenced to define the IFN-γ-independent transcriptomic response to C. parvum infection. Gene Ontology and transcript abundance comparisons showed host immune response and metabolism changes. Transcripts for type I interferon-responsive genes were more abundant in C. parvum-infected mice treated with STAg. Comparisons between phosphate-buffered saline (PBS) and STAg treatments showed no significant differences in C. parvum gene expression. C. parvum transcript abundance was highest in the ileum and mucin-like glycoproteins and the GDP-fucose transporter were among the most abundant. These results will assist the field in determining both host- and parasite-directed future therapeutic targets.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Cryptosporidium/genética , Imunidade , Interferon gama , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...